Hong Xu, Cheng Cheng, Sven Koenig, and T. K. Satish Kumar. Message passing algorithms for semiring-based and valued constraint satisfaction problems. In Proceedings of the 11th International Symposium on Combinatorial Search (SoCS), 115–123. 2018. URL: https://aaai.org/ocs/index.php/SOCS/SOCS18/paper/viewFile/17969/17107.pdf.
[full text] [BibTeX▼]


Local consistency algorithms, like arc consistency (AC) algorithms, are polynomial-time algorithms that prune the search space of constraint satisfaction problems (CSPs). In this paper, we present connections between message passing algorithms and AC for semiring-based CSPs (SCSPs) and valued CSPs (VCSPs), two well-established frameworks that generalize CSPs. Message passing algorithms are well known distributed search algorithms for solving many combinatorial problems in artificial intelligence, probabilistic reasoning, and information theory. However, the relationship between message passing algorithms and SCSPs or VCSPs still remains understudied. Towards this end, we propose the best-\(\odot\) message passing (BOMP) algorithm for SCSPs and VCSPs. We prove that, unlike other standard message passing algorithms which are in general not guaranteed to converge, the BOMP algorithm guarantees convergence for SCSPs and specific subclasses of VCSPs. We also theoretically study the relationship between the BOMP algorithm and AC on SCSPs, and empirically study the quality of the solutions produced by the BOMP algorithm for VCSPs.

Full Text

Your browser does not support viewing the PDF file inline. Please click the link below to download the file.